Ontology Dynamics
Belief Change
Nonmonotonic Reasoning

Thomas Meyer

Knowledge Representation and Reasoning
CSIR Meraka
South Africa
Logic-Based Ontology Dynamics

Ontologies
- Logic-based representations have been enormously beneficial
 - Particularly description logics
- The main advantages
 - A clear formal semantics
 - Efficient reasoners

Ontology Dynamics
- A growing need for coping with changing ontologies
- Current approaches are somewhat ad hoc
- Put Ontology Dynamics on a solid formal footing
Purpose of this talk

What I will attempt to do
- Focus on some aspects of Ontology Dynamics
- Broad overviews
- Look at existing links
- Some thoughts on challenges

What I will not attempt to do
- Give a comprehensive survey of Belief Change
- Give a comprehensive survey of Nonmonotonic Reasoning
- Attempt to describe all links between these areas
Outline

1 Logic-Based Ontologies

2 Ontology Dynamics

3 Belief Change
 - Belief Change and Ontology Dynamics

4 Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies

5 Conclusion
Outline

1. Logic-Based Ontologies
2. Ontology Dynamics
3. Belief Change
 - Belief Change and Ontology Dynamics
4. Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies
5. Conclusion
Outline

1. Logic-Based Ontologies
2. Ontology Dynamics
3. Belief Change
 - Belief Change and Ontology Dynamics
4. Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies
5. Conclusion
Outline

1. Logic-Based Ontologies
2. Ontology Dynamics
3. Belief Change
 - Belief Change and Ontology Dynamics
4. Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies
5. Conclusion
Description Logics

An Overview

- (Decidable) fragments of first-order logic
- Concepts: classes of individuals
- Roles: binary relations between individuals
- Define a terminology: TBox
- Provide assertions: ABox

Standard Reasoning Services

- Instance checking
- Concept subsumption and equivalence
- Concept satisfiability and knowledge base inconsistency
The Description Logic \mathcal{ALC}

Concept construction
- Complex concepts formed using various constructors
- Negation: $\neg C$; Conjunction: $C \sqcap D$; Disjunction: $C \sqcup D$
- TBox statements
 - Subsumption: $C \sqsubseteq D$ where C and D are concepts
- ABox statements
 - $C(a)$ where C is a concept and a is an individual name

Examples
- Person \sqsubseteq Animal \sqcap Biped
- Man \models Person \sqcap \neg Woman
- \negParent(Sam)
Description Logics and the Semantic Web

OWL 2 (Web Ontology Language)
- A W3C recommendation
- Based on the description logic $SROIQ$

OWL 2 Profiles
- EL for dealing with large TBoxes
 - Based on the \mathcal{EL} family of description logics
- QL for dealing with large ABoxes
 - Based on the DL-Lite family of description logics
- RL for exploiting rule-based technologies within OWL 2
 - Based on Description Logic Programs
Ontology Dynamics

Ontology Construction
- Debugging and repair; Explanation

Ontology Update
- Updates due to a dynamic world; Web services

Defeasibility in Ontologies
- Not related to ontology dynamics?

Ontology Versioning
- Maintaining different versions of the same ontology
What is Belief Change?

Informally
- An agent has beliefs about the world it inhabits
- It receives new information
- It adjusts its beliefs accordingly
- It does so in a rational fashion

Formally
- Beliefs are represented as a set of sentences
- The new input is a single sentence
- Adjustment: an operator on belief sets and sentences
- The result is a set of sentences
Rationality Criteria

Basic Criteria
- Categorial Matching
- Logical Consistency
- Logical Closure?

Extended Criteria
- Minimal Change
- Preference: Retain more important beliefs if necessary
Types of Belief Change

Static Environment
- **Revision**: Consistent incorporation of new information
- **Contraction**: Removal of specified information
- **Merging**: Dealing with inconsistency

Dynamic Environment
- **Update**: Consistent incorporation of new information
- **Erasure**: Removal of specified information
Static Belief Change

Assumptions

- A logic with a Tarskian consequence relation
 - In practice (frequently), a finitely generated propositional logic
- The set of beliefs K is consistent
- Focus is on contraction
- Revision can be obtained by first contracting and then adding

Belief bases or belief sets?

- Base change: Syntax matters $\{p, q\}$ vs. $\{p, p \rightarrow q\}$
- Belief set: Syntax independence
Base Contraction: \(B = \{ p \rightarrow q, q \rightarrow r \} \) entails \(p \rightarrow r \)

Partial meet contraction
- Find the \((p \rightarrow r) \)-remainder sets:
 - Maximal subsets of \(B \) not entailing \(p \rightarrow r \): \(\{ p \rightarrow q \}, \{ q \rightarrow r \} \)
 - Choose some of these and take their intersection:
 \(\{ p \rightarrow q \}, \{ q \rightarrow r \}, \emptyset \)
 - Maxichoice: choose exactly one; Full Meet: choose all

Kernel meet contraction
- Find the \((p \rightarrow r) \)-kernels:
 - Minimal subsets of \(B \) entailing \(p \rightarrow r \): \(\{ p \rightarrow q, q \rightarrow r \} \)
 - Choose an incision (at least one sentence from each kernel) and remove from \(B \):
 \(\{ p \rightarrow q \}, \{ q \rightarrow r \}, \{ p \rightarrow q, q \rightarrow r \} \)
Theory Contraction: \(Cn(B) = \{ p \rightarrow q, q \rightarrow r, p \rightarrow r, \ldots \} \)

Partial meet contraction
- Find the \((p \rightarrow r)\)-remainder sets:
 \[Cn(p \rightarrow q, (\neg p \land q) \rightarrow r), Cn(q \rightarrow r, (p \land r) \rightarrow q) \]
- Choose some and take their intersection (always a theory)
- Maxichoice and Full Meet as before

Kernel meet contraction
- Find the \((p \rightarrow r)\)-kernels, choose an incision (at least one sentence from each) and remove from \(Cn(B) \)
- More kernels: \(\{ p \rightarrow q, q \rightarrow r \}, \{ p \rightarrow r \}, \ldots \)
- Not necessarily a theory, so close under \(Cn \)
Link between partial meet and kernel contraction

Base contraction

- Partial meet contraction is strictly weaker than kernel contraction

Belief set contraction

- Partial meet contraction coincides with kernel contraction
Dynamic Belief Change

Assumptions
- Change has taken place because the world has changed
 - In practice (usually), a finitely generated propositional logic
- The set of beliefs K is consistent
- Focus is on belief update

Construction methods for belief update
- Model update operators
- A partial order over worlds for every model of K
- Update with α: take the union of all minimal α-worlds
- Represents the models of the updated beliefs K'
Outline

1. Logic-Based Ontologies
2. Ontology Dynamics
3. Belief Change
 - Belief Change and Ontology Dynamics
4. Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies
5. Conclusion
Ontology Debugging

- Identify causes of unwanted consequences
- \(T = \{ A \sqsubseteq B \cap C, C \sqsubseteq \neg B, B \sqsubseteq \neg C \} \)
- Unwanted axiom \(\alpha: A \sqsubseteq \bot \)
- Based on obtaining justifications for a sentence \(\alpha \):
 - A minimal subset of \(T \) which entailed \(\alpha \)
- Justifications: \(\{ A \sqsubseteq B \cap C, C \sqsubseteq \neg B \}, \{ A \sqsubseteq B \cap C, B \sqsubseteq \neg C \} \)
- Justifications are special cases of kernels
Ontology Repair

- Maximal subsets of \mathcal{T} not entailing α
- $\mathcal{T} = \{A \sqsubseteq B \cap C, C \sqsubseteq \neg B, B \sqsubseteq \neg C\}$
- Repairs: $\{A \sqsubseteq B \cap C\}$, $\{C \sqsubseteq \neg B, B \sqsubseteq \neg C\}$
- Special cases of partial meet base contraction
- Also obtained from justifications
 - Frequently using the **hitting set algorithm** (Reiter, 1987)
- Special cases of kernel base contraction
Challenges

Syntax independence?

- Results are syntax dependent
- Approaches to syntax independence
 - Laconic and precise justifications (Horridge et al., 2008)
 - Work on belief set contraction
 - (Delgrande, 2008, Booth et al. 2009)

Unique solutions?

- Current approaches provide multiple solutions
- Methods for providing a unique solution
- Belief set contraction and preferences
Challenges

“Lifting” belief change to description logics

- Propositional belief change has certain properties
- Description logics have more structure
- Belief change for DLs need to take this into account

Example

- $B \sqsubseteq F$
- $B(T), \neg F(T), B(C)$
- $F(C)$?
- Replace $B \sqsubseteq F$ with “$B \sqsubseteq F$ except for T”?
Ontology Update

“Lifting” to description logics
- Distinguish between TBox and Abox updates
- Virtually no work on TBox updates
- Some work on Abox updates (Baader et al., 2005)

Results and Challenges
- Computing updates is expensive
- Results not always expressible in the same description logic
 - Move to a more expressive description logic?
 - Approximate results?
 - Constraints on the structure of updates?
1. Logic-Based Ontologies
2. Ontology Dynamics
3. Belief Change
 - Belief Change and Ontology Dynamics
4. Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies
5. Conclusion
Nonmonotonic Reasoning

The basics

- Based on a classical monotonic logic:
 - Monotonicity: If $K \vDash \alpha$, $K \subseteq K'$ then $K \vDash \alpha$
- Replace \vDash with a nonmonotonic consequence relation $\models \sim$
 - Birds usually fly, Tweety is a bird, but Tweety doesn’t fly

Best known approaches to nonmonotonicity

- Default Logic (Reiter, 1980)
- Autoepistemic logic (Moore, 1985)
- Logic programming (Gelfond et al. 1988)
 - Answer set programming
Outline

1. Logic-Based Ontologies
2. Ontology Dynamics
3. Belief Change
 - Belief Change and Ontology Dynamics
4. Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies
5. Conclusion
An abstract view of Belief Revision

- K is a belief set (closed under logical consequence)
- $K \ast \alpha$ is the new belief set resulting from a revision by α

An abstract view of Nonmonotonic Reasoning

- A nonmonotonic consequence relation \models
- $\alpha \models \beta$ means “given α, it usually follows that β”
Nonmonotonic Reasoning and Belief Set Revision

Nonmonotonic Reasoning as Belief Revision

\[K = \{ \beta \mid T \models \sim \beta \}; \quad K * \alpha = \{ \beta \mid \alpha \models \sim \beta \} \]

Belief Revision as Nonmonotonic Reasoning

\[\alpha \models \sim \beta \iff \beta \in K * \alpha \]
Another perspective on Nonmonotonic Reasoning

Enrich the language with a nonmonotonic operator \sim

- Typically an underlying propositional logic
 - Sentences α, β, etc.
- $\alpha \sim \beta$ is a sentence in the enriched language

Conditional knowledge base

- $KB = \{\alpha_1 \sim \beta_1, \alpha_2 \sim \beta_2, \ldots\}$
- $\neg \alpha \sim \bot$ is equivalent to α
- $KB \models_C (\alpha \sim \beta)$?
- \models_C is a monotonic consequence relation
- The nonmonotonicity is in the enriched language
Default reasoning (Lehmann 1995)

- Two readings of nonmonotonic reasoning
 - presumptive and stereotypical
- Both are encoded as conditional knowledge bases
- Both can be “compiled” away
 - Computing maximally consistent subsets
- Complexity for both remain the same as the classical case
A need for nonmonotonicity

- “Bacteria may cause pneumonia” (Rector et al. 2008)
- “In humans, the heart is usually located on the left-had side of the body” (Rector, 2004; Stevens et al. 2007)

Nonmonotonic extensions to description logics

- Description logic programming (Grosof et al. 2003)
- Adding epistemic operators (Donini et al. 1998)
- Default logic extensions (Baader et al. 1995)

Complexity issues
Nonmonotonic Reasoning and Ontologies

TBoxes as conditional knowledge bases
- Lift $\alpha \models \beta$ to conditional subsumption \sqsubseteq
- TBox may contain statements of the form $A \sqsubseteq B$
- Conditional TBox $CT = \{ A_1 \sqsubseteq B_1, A_2 \sqsubseteq B_2, \ldots \}$
- $\mathcal{T} \cup CT \models_C \alpha$?

Lehmann’s Default Reasoning?
- Presumptive and Stereotypical reasoning for ontologies
- Will not affect the complexity in many cases

Main challenge
- Are these forms of reasoning appropriate in this context?
Ontology Versioning

Semantic Diff

- A need for maintaining different versions of ontologies
- Tools exist for keeping track of changes
- The methods developed so far are mostly syntactic in nature
- A semantic approach is needed
- Current work (Konev et al., 2008; Franconi et al., 2010)
 - Development of methods for defining “Semantic Diff”
 - Related to Belief Change
 - Refinement of existing reasoning tools necessary
Outline

1. Logic-Based Ontologies
2. Ontology Dynamics
3. Belief Change
 - Belief Change and Ontology Dynamics
4. Nonmonotonic Reasoning
 - Nonmonotonic Reasoning and Belief Set Revision
 - Nonmonotonic Reasoning and Ontologies
5. Conclusion
Conclusion

Summary
- Increasing demand for coping with Ontology Dynamics
 - Largely due to the efficiency of ontology reasoners
- Dramatic increase in tools for Ontology Dynamics
- Many based on existing work

Challenges
- Restriction on languages
- Do not reinvent the wheel
- Appropriate refinement of existing methods
- Complexity issues