Open Structure:
Ontology Repair Plan based on Atomic Modeling

Jos Lehmann
joint work with Alan Bundy and Michael Chan

School of Informatics, University of Edinburgh

ARCOE 2009
Outline

1. Overview GALILEO Project
 - Ontology Evolution in Physics

2. A Case Study in Atomic Modeling
 - From Thomson’s to Rutherford’s atom

3. Ontology Repair Plan based on Case Study
 - Open Structure

4. Discussion
 - Future work
Aim: solving contradictions between multiple ontologies.

- Canonical case: contradictions in physics between theoretical expectations and experimental observations.

Main results: Ontology Repair Plans (ORPs).

- Trigger: detects contradiction between ontologies.
- Repair: changes ontology axioms or signature.
- Create New Axioms: propagates changes as needed.

Methodology: turn case studies in physics history into ORPs.

- Extract ORP’s conceptual backbone from case study.
- Represent ORP in higher-order logic.
- Implement ORP (λProlog and beyond).

Some ORPs and their state of development.

- Developed and tested: Where’s My Stuff?, Inconstancy, Unite.
- Being tested: Open Structure, Close Structure.
- Under development: Unify.
Thomson’s atom (1904) and Rutherford’s atom (1911)

- 11 electron atom and 15 electron atom.
- Black dots and circumferences represent negative charges and their orbits/rings.
- Red circles represent positive charge (more intense where darker).
- Note that Rutherford’s atom’s structure is monotonic: Thomson’s atom’s configuration changes when electrons are added, Rutherford’s atom’s configuration is stable.
Rutherford’s scattering apparatus (1898-1911)

- R, fixed source of α-particles (double positive charges).
- D, collimating diaphragm.
- F, fixed foil.
- S, screen.
- M, microscope.
- Chamber is evacuated and can be rotated around F.
- Original image in (Geiger, 1913), downloaded from. http://galileo.phys.virginia.edu
Expected vs observed scattering

- Red spots and lines are α-particles and their paths.
- Half-dashed thin red lines are ideal undeflected paths.
- b’s and $-b$’s are impact parameters ($b = 0$ for third particle).
- r’s are distances between a point of the atom’s electric field and the atom’s center.
- R is the atom’s radius.
- th’s are scattering angles.
- Expected scattering is minimal.
- Observed scattering is minimal, large or a complete rebound.
The nucleus explains the difference between expectations and observations.

The nucleus entails different deflection functions:

\[\theta(b)_{\text{Thomson}} \text{ and } \theta(b)_{\text{Rutherford}} \] calculate different deflection angles for same \(b \)'s.

The nucleus also entails different scattering potential functions:

\[V(r)_{\text{Thomson}} \text{ and } V(r)_{\text{Rutherford}} \] calculate different amounts of work exerted by positive electric fields when deflecting incident particles at same distance \(r \).
Scattering potential functions for different structures

\[V(r)_{\text{Thomson}} = \begin{cases}
\frac{Q_A Q_B}{4\pi\epsilon_0} \frac{1}{r} & R \leq r \\
\frac{Q_A Q_B}{4\pi\epsilon_0} \frac{1}{2R^3} (3R^2 - r^2) & 0 \leq r \leq R
\end{cases} \]

\[V(r)_{\text{Rutherford}} = \frac{Q_A Q_B}{4\pi\epsilon_0} \frac{1}{r} \]

where \(Q_A \) is the charge of incident particle, \(Q_B \) is the charge of the target atom, \(1/4\pi\epsilon_0 \) is the Coulomb constant, \(r \) is the distance between the incident particle and the centre of the target atom, \(R \) is the radius of the target atom.

- \(V(r)_{\text{Thomson}} \) is both non-Coulombic (i.e. for values of \(r \) lower than the atom’s radius \(R \), the potential is directly proportional to \(r \)) and Coulombic (i.e. for values of \(r \) higher than \(R \), the potential is inversely proportional to \(r \)).
- \(V(r)_{\text{Rutherford}} \) is only Coulombic (\(R \) needs not to be considered).
- Formulae taken from (Zoli, 1998)

Evolution of $V(r)$ by existing ORPs

\[
V(r)_{\text{Thomson}} = \begin{cases}
\frac{Q_A Q_B}{4 \pi \epsilon_0} \frac{1}{r} & R \leq r \\
\frac{Q_A Q_B}{4 \pi \epsilon_0} \frac{1}{2R^3} (3R^2 - r^2) & 0 \leq r \leq R
\end{cases}
\]

\[
V(r)_{\text{Rutherford}} = \frac{Q_A Q_B}{4 \pi \epsilon_0} \frac{1}{r}
\]

- **Where is my stuff?** would stick to Thomson’s atomic structure by increasing Q_A and yielding evolution $V(r) \coloneqq V(r)_{\text{vis}} + V(r)_{\text{invis}}$. Problem: how would the additional charge be distributed wrt R?
- **Unite**, the inverse of Where is my stuff?, would not be able to let $V(r)$ evolve.
- **Incons** too would stick to Thomson’s atomic structure and let $V(r)$ evolve in such a way that the Coulomb constant $1/4 \pi \epsilon_0$ would depend on distance r from the center of atom. This would yield a very complicated structure.
- **Need for an ORP that handles structural evolution as such**, rather than by pivoting on quantities.
- Formulae taken from (Zoli, 1998)
Open Structure ORP: Trigger

Trigger: $O_t \vdash d_4 > d_3 \geq cop \geq d_2 > d_1 \land$

$$((stuff(d_2) > stuff(d_1) \land stuff(d_3) > stuff(d_4)) \lor$$

$$(stuff(d_1) > stuff(d_2) \land stuff(d_4) > stuff(d_3))).$$

,$O_s \vdash \forall d, d' : \delta. \ d' > d \rightarrow stuff(d) > stuff(d').$

- **stuff** represents function subject to evolution (V is stuff).
- **stuff** ranges over a type δ of d’s (like V ranges over the type dis of distances r’s).
- **stuff**’s domain contains a cut-off point cop (like V’s domain contains R).
- K is constant (like all other quantities remain constant throughout V’s evolution).

Two cases of contradiction:

crested* vs open structure In O_t, for all arguments below cut-off point, value of **stuff** is directly proportional to argument, inversely proportional otherwise. In O_s value of **stuff** is always inversely proportional to argument.

trenched* vs open structure In O_t, for all arguments below cut-off point, value of **stuff** is inversely proportional to the argument while, directly proportional otherwise. O_s is the same as in the first case above.

*tentative term
Open Structure: \(\nu(stuff) ::= \lambda d : \delta. K/d. \)

Create New Axioms:
\[
Ax(\nu(O_t)) ::= Ax(O_t) \setminus \{stuf::= \lambda d : \delta. (cop > d \land Kd) \lor K/d\} \cup \{\nu(stuff) ::= \lambda d : \delta. K/d\}.
\]
\[
Ax(\nu(O_s)) ::= Ax(O_s) \setminus \{stuf::= \lambda cop, d : \delta. (cop > d \land Kd) \lor K/d\} \cup \{\nu(stuff) ::= \lambda d : \delta. K/d\}.
\]

Contradiction always repaired according to what dictated by \(O_s \).
Application of Open Structure

Substitution:
\[
\left\{ \frac{Q_A Q_B}{4\pi\varepsilon_0}, V/stuff, d_i/r_i, \text{cop}/R \right\}
\]

Trigger:
\[
O_t \vdash r_4 > r_3 \geq R \geq r_2 > r_1 \land
((V(r_2) > V(r_1) \land V(r_3) > V(r_4))
O_s \vdash \forall r, r': \text{dis. } r' > r \rightarrow V(r) > V(r').
\]

New Axioms:
\[
\begin{align*}
\text{Ax}(\nu(O_t)) & := \text{Ax}(O_t) \setminus \\
& \left\{ V := \lambda r : \text{dis. } (R > r \land Kr) \lor K/r \right\} \cup \\
& \left\{ \nu(V) := \lambda r : \text{dis. } K/r \right\}.
\end{align*}
\]
\[
\begin{align*}
\text{Ax}(\nu(O_s)) & := \text{Ax}(O_s) \setminus \\
& \left\{ V := \lambda r : \text{dis. } (R > r \land Kr) \lor K/r \right\} \cup \\
& \left\{ \nu(V) := \lambda r : \text{dis. } K/r \right\}.
\end{align*}
\]
Future work

- Find other cases for application of Open Structure.
- Interpret its inverse, Close Structure, and find cases of application.
- Alternative treatment of Thomson vs Rutherford case study: modeling the evolution between the two atoms in terms of their different deflection functions.